Информационно-аналитический портал
Высокопроизводительные
вычисления на WINDOWS-кластерах
   

 
 
  Главная
  Новости
  Как создать Windows-кластер
  Компьютеры
  Архитектура  
  Тестирование производительности  
  Windows-кластеры  
  Системы управления Windows-кластерами  
  Персональные суперкомпьютеры  
  Технологии
  Параллельное программирование
  Библиотеки, пакеты, приложения
  Метакомпьютинг, GRID
  Обучение
  Исследования
 
  
Логин:    
Пароль:    
Запомнить:
 Забыли пароль? Регистрация 
  
 
Microsoft HPC RussiaКомпьютерыАрхитектураКлассификация вычислительных систем
 

Классификация вычислительных систем

Мультикомпьютеры

Мультикомпьютеры (многопроцессорные системы с распределенной памятью) уже не обеспечивают общий доступ ко всей имеющейся в системах памяти (no-remote memory access or NORMA ). При всей схожести подобной архитектуры с системами с распределенной общей памятью, мультикомпьютеры имеют принципиальное отличие – каждый процессор системы может использовать только свою локальную память, в то время как для доступа к данным, располагаемых на других процессорах, необходимо явно выполнить операции передачи сообщений (message passing operations ). Данный подход используется при построении двух важных типов многопроцессорных вычислительных систем - массивно-параллельных систем (massively parallel processor or MPP) и кластеров (clusters). Среди представителей первого типа систем - IBM RS/6000 SP2, Intel PARAGON, ASCI Red, транспьютерные системы Parsytec и др.; примерами кластеров являются, например, системы AC3 Velocity и NCSA NT Supercluster.

Multicomputer

Следует отметить чрезвычайно быстрое развитие многопроцессорных вычислительных систем кластерного типа . Под кластером обычно понимается множество отдельных компьютеров, объединенных в сеть, для которых при помощи специальных аппаратно-программных средств обеспечивается возможность унифицированного управления (single system image), надежного функционирования (availability) и эффективного использования (performance). Кластеры могут быть образованы на базе уже существующих у потребителей отдельных компьютеров, либо же сконструированы из типовых компьютерных элементов, что обычно не требует значительных финансовых затрат. Применение кластеров может также в некоторой степени снизить проблемы, связанные с разработкой параллельных алгоритмов и программ, поскольку повышение вычислительной мощности отдельных процессоров позволяет строить кластеры из сравнительно небольшого количества (несколько десятков) отдельных компьютеров (lowly parallel processing). Это приводит к тому, что для параллельного выполнения в алгоритмах решения вычислительных задач достаточно выделять только крупные независимые части расчетов (coarse granularity), что, в свою очередь, снижает сложность построения параллельных методов вычислений и уменьшает потоки передаваемых данных между компьютерами кластера. Вместе с этим следует отметить, что организация взаимодействия вычислительных узлов кластера при помощи передачи сообщений обычно приводит к значительным временным задержкам, что накладывает дополнительные ограничения на тип разрабатываемых параллельных алгоритмов и программ.

Отдельные исследователи обращают особое внимание на отличие понятия кластера от сети компьютеров (network of workstations or NOW). Для построения локальной компьютерной сети, как правило, применяют более простые сети передачи данных (порядка 100 Мбит/сек). Компьютеры сети обычно более рассредоточены и могут быть использованы пользователями для выполнения каких-либо дополнительных работ.

В завершение обсуждаемой темы можно отметить, что существуют и другие способы классификации вычислительных систем. При рассмотрении данной темы параллельных вычислений рекомендуется обратить внимание на способ структурной нотации для описания архитектуры ЭВМ, позволяющий с высокой степенью точности описать многие характерные особенности компьютерных систем.


<< вернуться  |   Документ от: 21.11.2007 15:24
 

Новости

26.12.2007
25.12.2007
24.12.2007
17.12.2007
17.12.2007
 

   

© ННГУ, Центр компетенции в области высокопроизводительных вычислений на основе технологий Майкрософт, 2007